The Geometrical State of the Universe

Supernova Cosmology Project

Posted in Curvature Parameters, dark energy, dark matter, False Vacuum, Non Euclidean | Tagged , , , , | Leave a comment

Dark Energy Camera

Dark Energy Camera construction time lapse

A long-awaited device that will help unravel one of the universe’s most compelling mysteries gets ready to see first light.See:The Dark Energy Camera opens its eyes

Unlike the human eye, photographic film and digital cameras can stare at the sky for a long time and store more and more light. By replacing the human eye with cameras, astronomers can detect fainter and more distant objects.

Cameras used for optical astronomy are usually composed of an array of digital chips called charge-coupled devices (CCDs). CCDs convert light into electrons. Each chip is divided into millions of pixels. The electrons generated by the light that hits each pixel are converted to a digital value that a computer can store or display. 

In concept, these are the same devices that make up the heart of any home digital camera. However, unlike home cameras that are used to record images of things that are very bright, astronomical CCDs must be souped up in order to detect the tiny amount of light that reaches us from faint and/or distant objects. Much of the light from extremely distant galaxies and supernovae has been redshifted into long-wavelength red and infrared light, which conventional CCDs do not detect very well. See: Dark Energy Survey

Posted in dark energy | Tagged | Leave a comment

Nova: Exploring Neutrino Mysteries

Neutrinos are a mystery to physicists. They exist in three different flavors and mass states and may be able to give hints about the origins of the matter-dominated universe. A new long-baseline experiment led by Fermilab called NOvA may provide some answers. There is a live feed of the first detector block being moved at http://www.fnal.gov/pub/webcams/nova_webcam/index.htm

Watch live streaming video from fermilab at livestream.com
Posted in Uncategorized | Leave a comment

Duchamp’s Fountain

Duchamp~ Artmaking is making the invisible, visible.

See: Marcel Duchamps’s Fountain: It’s History and Aesthetics in Context of 1917 by William Camfield

Click on Image

The extended understanding  for me of Duchamp as an artist was always in context of the cubists revelation as an evolution of Quantum Gravity displayed in a Monte Carlo demonstration as membranes.

 

Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling to compute their results. Monte Carlo methods are often used in simulating physical and mathematical systems. Because of their reliance on repeated computation of random or pseudo-random numbers, these methods are most suited to calculation by a computer and tend to be used when it is unfeasible or impossible to compute an exact result with a deterministic algorithm.[1]

David Berenstein of Shores of Dirac Sea wrote a blog entry entitled, “Art From Math ,” help to point out a distinction that helped to stimulate perspective about mathematical art demonstration in regard to Plot development.

Identifying artistic impressionism for me was to say that my view had been limited  by one method only.  Yet, it  presented the opportunity of expressing “a distinction of originality” that in context of science’s regard as to see such expression as an “original”  yet producible by example.  This plot development and resulting image demonstrated by David Berenstein was repeated by Lubos’s Motl’s example.

This to me was demonstrative of the science behind repeatability by recognition of algorithmic function so while seemingly unique in the sense of being “artistic”  it seemed to me to be in essence of value in science. Not just relegated to blog alone. This was in difference to what I felt David was saying.

By revealing the subject of Duchamp’s Fountain this helped to see further understanding of David Berenstein’s expression of artistic mathematical imaging by accident and as a result seen as unique in science by accident. An accident,  in mathematical production.

See Also:

Posted in Marcel Duchamp, Theory of Everything, TOE | Tagged , , | Leave a comment

The Quantum Harmonic Oscillator

Quantum Harmonic Oscillator

 

Here are a series of written Blog entries by Matt Strassler from his Blog, Of Particular Significance.

  1. Ball on a Spring (Classical)
  2. Ball on a Spring (Quantum)
  3. Waves (Classical Form)
  4. Waves (Classical Equation of Motion)
  5. Waves (Quantum) 
  6. Fields
  7.  Particles are Quanta
  8.  How fields and particles interact with each other 
  9.  How the Higgs Field Works

    Given a preceding map  by Proffessor Strassler according to what has been gain in finality views requires this updating in order to proceed correctly in the views shared currently in science. So that lineage of thought is important to me.

    Probability Distributions for the Quantum Oscillator

    At the same time one cannot be held back from looking further and seeing where theoretical views have been taken beyond the constraints applied to the science mind.:)

    So what is the theory, then?

    Pythagoras could be called the first known string theorist. Pythagoras, an excellent lyre player, figured out the first known string physics — the harmonic relationship. Pythagoras realized that vibrating Lyre strings of equal tensions but different lengths would produce harmonious notesratio of the lengths of the two strings were a whole number. (i.e. middle C and high C) if the……

       Pythagoras discovered this by looking and listening. Today that information is more precisely encoded into mathematics, namely the wave equation for a string with a tension T and a mass per unit length m. If the string is described in coordinates as in the drawing below, where x is the distance along the string and y is the height of the string, as the string oscillates in time t, 

    See: Official String Theory Web Site

    Posted in Harmonic Oscillator, Higgs | Tagged , , , | Leave a comment

    Moon Pictures

    http://creativecommons.org/licenses/by-nd/3.0/

    LPOD Photo Gallery

    Motivation

    During the late 1800s and well into the 1900s it seemed that every book that described the craters, mountains and other features of Earth’s moon was titled The Moon. In my mind this came to stand for an encyclopedia-like series of descriptions of features on the lunar surface. In general, more recent books, especially those by professional scientists, describe the processes that formed and modified the Moon, and the surface features themselves are no longer described systematically. But for many lunar observers and others thinking about the Moon as a place, knowledge of individual features is important. See: The Moon Wiki

    Labeled Moon-Click Here for Larger Image

    Posted in Moon, Moon Base, Plato's Nightlight Mining Company | Tagged , , | 2 Comments

    Space Weather Now

    2012-09-03 15:14 UTC  G2 (Moderate) Geomagnetic Storm in Progress
    G2 (Moderate) geomagnetic storming is ongoing now as a result of the coronal mass ejection (CME) arrival associated with the August 31st filament eruption.  Continued geomagnetic storming is expected in the near term as the CME continues to affect Earth.  Solar radiation storm levels continue to hover near the S1 (Minor) event threshold but should continue their slow decline toward background levels.  Stay tuned for updates. See:Space Weather Prediction Center

    Posted in Helioseismology, Space Weather | Tagged , | Leave a comment

    Radiation Belt Storms Probes Launched

     NASA hosted a two-day event for 50 social media followers on August 22-23, 2012, at NASA’s Kennedy Space Center in Florida. NASA’s twin Radiation Belt Storm Probes (RBSP) are scheduled to lift off aboard a United Launch Alliance Atlas V rocket at 4:08 a.m. on August 23. Designed for a two-year primary science mission in orbit around Earth, RBSP will provide insight into our planet’s radiation belts, and help scientists predict changes in this critical region of space.

     http://youtu.be/w0SaKPuocRA 

    NASA’s Radiation Belt Storm Probes blasted off from Cape Canaveral on August 30th, 2012. Bristling with sensors, the heavily-shielded spacecraft are on a 2-year mission to discover what makes the radiation belts so dangerous and so devilishly unpredictable.

    “We’ve known about the Van Allen Belts for decades yet they continue to surprise us with unexpected storms of ‘killer electrons’ and other phenomena,” says mission scientist David Sibeck, “The Storm Probes will help us understand what’s going on out there.” 

    RBSP (instruments, 200px)

    Each of the two Storm Probes is bristling with sensors to count energetic particles, measure plasma waves, and detect electromagnetic radiation. Learn more

    See: The Radiation Belt Storm Probes

    See also

    Posted in Aurora, Helioseismology, Satellites | Tagged , , | Leave a comment

    Grail At the Moon

     Grail Recovery and Interior Labratory

    NASA’s Gravity Recovery And Interior Laboratory (GRAIL)-A spacecraft successfully completed its planned main engine burn at 2 p.m. PST (5 p.m. EST) today. As of 3 p.m. PST (6 p.m. EST), GRAIL-A is in a 56-mile (90-kilometer) by 5,197-mile (8,363-kilometer) orbit around the moon that takes approximately 11.5 hours to complete.

    Visualisation of the “Geoid” of the Moon

    Posted in Grace Satellite, LCROSS, LRO, Moon, Moon Base, Plato's Nightlight Mining Company, Satellites, Time Variable Measure | Tagged , , , , , , , , | Leave a comment

    Radiation Belt Storm Probes (RBSP)

    The launch of an Atlas V carrying NASA’s Radiation Belt Storm Probes (RBSP) payload was scrubbed today due to weather conditions associated with lightning, as well as cumulus and anvil clouds. With the unfavorable weather forecast as a result of Tropical Storm Isaac, the leadership team has decided to roll the Atlas V vehicle back to the Vertical Integration Facility to ensure the launch vehicle and twin RBSP spacecraft are secured and protected from inclement weather. Pending approval from the range, the launch is rescheduled to Thursday, Aug. 30 at 4:05 a.m. Eastern Daylight Time. SeeRBSP Launch Targeted for No Earlier Than Aug. 30

    RBSP is being designed to help us understand the Sun’s influence on Earth and Near-Earth space by studying the Earth’s radiation belts on various scales of space and time. 

    The instruments on NASA’s Living With a Star Program’s (LWS) Radiation Belt Storm Probes (RBSP) mission will provide the measurements needed to characterize and quantify the plasma processes that produce very energetic ions and relativistic electrons. The RBSP mission is part of the broader LWS program whose missions were conceived to explore fundamental processes that operate throughout the solar system and in particular those that generate hazardous space weather effects in the vicinity of Earth and phenomena that could impact solar system exploration. RBSP instruments will measure the properties of charged particles that comprise the Earth’s radiation belts, the plasma waves that interact with them, the large-scale electric fields that transport them, and the particle-guiding magnetic field. 

    The two RBSP spacecraft will have nearly identical eccentric orbits. The orbits cover the entire radiation belt region and the two spacecraft lap each other several times over the course of the mission. The RBSP in situ measurements discriminate between spatial and temporal effects, and compare the effects of various proposed mechanisms for charged particle acceleration and loss. See: RBSP

    Credit: NASA/Johns Hopkins University Applied Physics Laboratory

    Engineers at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., prepare to place Radiation Belt Storm Probes spacecraft “B” in a thermal-vacuum chamber, where they can make sure the propulsion system will stand up to the range of hot, cold and airless conditions RBSP will face in outer space. This round of testing took place in late October-early November 2010.

    See Also:

    Posted in Aurora, Helioseismology, Satellites, Space Weather, Sun | Tagged , , , , , , | Leave a comment