In “The String Saga of Star Shine” I gave a distant measure of how we might seen any event from that time to now.

But before I begin I wanted to link Lubos’s mention of article from David G to him, to point out the method and determinacy with which I gave the “String Saga Star Shine” it’s inital point of measure “from” to our currrent infomration present in this universe now.

The Universe on a String By BRIAN GREENE

This striking pattern of convergence, linking concepts once thought unrelated, inspired Einstein to dream of the next and possibly final move: merging gravity and electromagnetism into a single, overarching theory of nature’s forces.

In hindsight, there was almost no way he could have succeeded. He was barely aware that there were two other forces he was neglecting — the strong and weak forces acting within atomic nuclei. Furthermore, he willfully ignored quantum mechanics, the new theory of the microworld that was receiving voluminous experimental support, but whose probabilistic framework struck him as deeply misguided. Einstein stayed the course, but by his final years he had drifted to the fringe of a subject he had once dominated.

Low and behold we measure the “high energy in our sun” but least we remember the lower ends of the spectrum how shall we ascertain the images of the Sun if we did not include the lower measures in what we discern of the “sterile neutrino?”

Lest we forget about the “idea of convergence here” we might again refer to Lee Smolin’s Book, The Trouble with Physics.” Might Brian Greene be referring to the “latest debate?”

The relationship here being expounded upon, holds this principal that Lee Smolin talks about in what a new theory can do. Pastes it in our heads as I have shown the historical value of what began with “Pauli’s Ghost particle” as the “now” of today, askes us to consider the value of the “sterile Neutrino” as a value in the discernation of that weak gravitational field?

**Arrow of Time**?

Let’s look at Kip Thornes definition of the “timeline(star shine’s) history” shall we?

Dr. Kip Thorne, Caltech 01-Relativity-The First 20th Century Revolution

So here we are, fully appreciating and understanding the “measure of distance” as we look at the “new image” of the sun?

Yes, we are to include now not only the valuation of high energy dissertations here but what value we have of the immediate presence of the neutrinos from the sun. We now have a much more comprehensive view of what the sun saids to us over “this distance of time?” How we may look at the image as we look at the way the sun looks in that picture shown by JoAnne of Cosmic Variance above.

A lot of people do not understand that if you look to the cosmo, you do not just look at what is evident from observation, but that your observation is increased, as you enhance your perceptions about the “real depth” of that universe.

So the lesson here, is that the mathematics “first born to mind” is a very suttle thing, as we peer deeper into the very beginning of this universe. While Einstein did not see in the way we do now, the relevance of that distance in time, is still held to every mind to consider in GR, that the depth of perception s still needed on a quantum level.

While the point made here is “gravitational in nature,” the issuance is from the “other dimensions” to now. Quantum dynamcically this has been revealled while the discrete notion has been applied to our thinking as the “oscillation factor” has been understood in the muon to electron neutrino?

So should I point to the nature spread out before us, as you look at the effect of the neutrinos on the Kamiokande screen? Other ways, that I have shown, as we look at the aurora borealis, or the rainbow in our skies?

The effect of “our reason” for such processes in physics are extremely versatile on a sociological level, that one might question indeed where such “pure thoughts in mathematics” could arise to the “symbolistic nature predating( monte carlo methods of computerization)” of that physics?

Model apprehension is part of the convergence that Lee Smolin and Brian Greene talk about, and without it, how could we look at nature and never consider that Einstein’s world is a much more dyamical one then we had first learnt from the lessons GR supplied about gravity in our world?

Yes GR is still a theory, but with experimental consequences, much as the model string theory offers you, as we look at the oscillatory nature of what asymmetry provides for us, from that pure “high energy state?” Gravity, very strong, to what is weak in the measures of the neutrino characters?

I gave some pictures to consider while I continue. Some may move ahead of me if they like:) Maybe Stefan and Bee of Backreaction?