## Quantum Biology

The frequency of vibration of an object is, among other things, a function of mass: A heavy guitar string vibrates more slowly than a light one and produces a lower tone. These tiny cantilevers vibrate at radio frequencies, in the 1 to 15 megahertz range, and because they are so small to begin with, adding just a tiny bit more mass will make a measurable change in frequency.

For cell detection, the researchers coated their cantilevers with antibodies that bind to E. coli bacteria, then bathed the devices in a solution containing the cells. Some of the cells were bound to the surface, and the additional mass changed the frequency of vibration. In one case just one cell happened to bond to a cantilever, and it was possible to detect the mass of the single cell.
‘Nano’ Becomes ‘Atto’ and Will Soon Be ‘Zepto’ for Cornell – New Technology

As soon as you use the word “quantum” there is a easy assessment for a scientist who deals with reduction-ism to have it sorted out as to what levels of perception are being forced upon  a definition and understanding. A measurable quantity of something? For us lay people, it is never that easy.

quan-tum (kwntm)

n. pl. quan·ta (-t)

1. A quantity or amount.
2. A specified portion.
3. Something that can be counted or measured.
4. Physics

a. The smallest amount of a physical quantity that can exist independently, especially a discrete quantity of electromagnetic radiation.
b. This amount of energy regarded as a unit.

Relating to or based upon quantum mechanics.

[Latin, from neuter of quantus, how great; see quantity.]

So suffice is it to say that by demonstrating this scalable reference to the values and options in recognition of the Powers of Ten,  we realize the depth with which we need participation. That through use of manufacture,  as for any of us to say such a thing that which is not observable normally, can we say then exists for us? We have all taken it for granted, even a scientist perhaps to realize how one can divvy up their day as to say at times our perception was much deeper in to the reality then previously confirmed?

Have we gotten so far into our assumptions of the world that we would not further entertain the idea that consciousness emerges from something. Consciousness that is so subtle that we have not really to this date been able to reproduce what consciousness actually looks like. Categorized consciousness at this wanted measurable level of perception that is needed.

Can we say we have always measured around it, and can shows signs of something going on in terms of biological exchange, but have as yet not been able to assess this function as nothing more then some abstract creature of design that we lack for distinct measurable quantities?

Quantum biology refers to applications of quantum mechanics to biological objects and problems. Usually, it is taken to refer to applications of the “non-trivial” quantum features such as superposition, nonlocality, entanglement and tunneling, as opposed to the “trivial” applications such as chemical bonding which apply to biology only indirectly by dictating quantum chemistry.
Austrian born physicist and theoretical biologist Erwin Schrödinger was one of the first scientists to suggest a study of quantum biology in his 1946 book “What is Life?

## Applications

Many biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve chemical reactions, light absorption, formation of excited electronic states, transfer of excitation energy, and the transfer of electrons and protons (hydrogen ions) in chemical processes such as photosynthesis and cellular respiration.[1] Quantum biology uses computation to model biological interactions in light of quantum mechanical effects.[2]
Some examples of the biological phenomena that have been studied in terms of quantum processes are the absorbance of frequency-specific radiation (i.e., photosynthesis[3] and vision[4]); the conversion of chemical energy into motion;[5] magnetoreception in animals,[6][7] DNA mutation [8] and brownian motors in many cellular processes.[9]
Recent studies have identified quantum coherence and entanglement between the excited states of different pigments in the light-harvesting stage of photosynthesis.[10][11] Although this stage of photosynthesis is highly efficient, it remains unclear exactly how or if these quantum effects are relevant biologically.[12]

## Notes

1. ^ Quantum Biology. University of Illinois at Urbana-Champaign, Theoretical and Computational Biophysics Group. http://www.ks.uiuc.edu/Research/quantum_biology/
2. ^ http://www.sciencedaily.com/releases/2007/01/070116133617.htm Science Daily Quantum Biology: Powerful Computer Models Reveal Key Biological Mechanism Retrieved Oct 14, 2007
3. ^ Quantum Secrets of Photosynthesis Revealed
4. ^ Garab, G. (1999). Photosynthesis: Mechanisms and Effects: Proceedings of the XIth International Congress on Photosynthesis. Kluwer Academic Publishers. ISBN 978-0-7923-5547-2.
5. ^ Levine, Raphael D. (2005). Molecular Reaction Dynamics. Cambridge University Press. pp. 16–18. ISBN 978-0-521-84276-1.
6. ^ Binhi, Vladimir N. (2002). Magnetobiology: Underlying Physical Problems. Academic Press. pp. 14–16. ISBN 978-0-12-100071-4.
7. ^ Erik M. Gauger, Elisabeth Rieper, John J. L. Morton, Simon C. Benjamin, Vlatko Vedral: Sustained quantum coherence and entanglement in the avian compass, Physics Review Letters, vol. 106, no. 4, 040503 (2011) (abstract, preprint)
8. ^ Lowdin, P.O. (1965) Quantum genetics and the aperiodic solid. Some aspects on the Biological problems of heredity, mutations, aging and tumours in view of the quantum theory of the DNA molecule. Advances in Quantum Chemistry. Volume 2. pp213-360. Acedemic Press
9. ^ Harald Krug; Harald Brune, Gunter Schmid, Ulrich Simon, Viola Vogel, Daniel Wyrwa, Holger Ernst, Armin Grunwald, Werner Grunwald, Heinrich Hofmann (2006). Nanotechnology: Assessment and Perspectives. Springer-Verlag Berlin and Heidelberg GmbH & Co. K. pp. 197–240. ISBN 978-3-540-32819-3.
10. ^ Sarovar, Mohan; Ishizaki, Akihito; Fleming, Graham R.; Whaley, K. Birgitta (2010). “Quantum entanglement in photosynthetic light-harvesting complexes”. Nature Physics 6 (6): 462–467. arXiv:0905.3787. Bibcode 2010NatPh…6..462S. doi:10.1038/nphys1652.
11. ^ Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC et al. (2007). “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.”. Nature 446 (7137): 782–6. Bibcode 2007Natur.446..782E. doi:10.1038/nature05678. PMID 17429397.
12. ^ Scholes GS (2010). “Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First?”. Journal of Physical Chemistry Letters 1: 2–8. doi:10.1021/jz900062f.